Index

add_metadata()

Add metadata to dataframe

bound_outcome()

Bound a outcome variable

check_model()

Tidy checks for model fit

convert_time_season()

Convert time variables to season

create_df_marginal_comparisons()

Create dataframe for marginal comparisons

create_fake_data()

Create a fake dataframe based on a real one

create_formula()

Programmatic way of constructing model formulas

create_mapping_labels()

Create a variable's dictionary for its labels

describe_data()

A function to describe the used dataframe

edcs_information()

Return information on chemicals of interest

estimate_selection_weights()

Title

estimate_weights()

Wrapper function to estimate balancing weights

explore_balance()

Assess balance on covariate distributions generated through weighting

explore_missings()

A function to explore the missing values of a dataframe

explore_shift()

Visualize the distribution of the shifted exposures

extract_cohort()

Extract the cohort label from the subject ID

find_common_confounders()

Find common confounders

fit_model_weighted()

Fit various models with weighting

from_dagitty_to_ggdag()

Convert a DAG to a formatted string

geom_dag_text_repel()

Repulsive textual annotations

handle_creatinine_confounding()

Title

handle_llodq()

Various strategies to handle values below the limit of detection/quantification

handle_missing_values()

Various strategies to handle missing values

handle_standardization()

Title

handle_transformation()

Title

load_ctd()

Load local CTD file

minimize_missings()

Select confounders to minimize missing values

plot_adrf()

Title

plot_amef()

Title

plot_ctd()

Visualize the CTD dataset after loading

plot_effect_estimates()

Plot effect estimates with confidence intervals

preproc_data()

Basic pre-processing of dataframes

test_npsem()

Wrapper function to derive a DAG's testable implications

theme_dag()

Minimalist DAG theme

visualize_dag()

Visualize DAG